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Abstract—Most fingerprint-based biometric systems store the minutiae template of a user in the database. It has been traditionally

assumed that the minutiae template of a user does not reveal any information about the original fingerprint. In this paper, we challenge

this notion and show that three levels of information about the parent fingerprint can be elicited from the minutiae template alone, viz.,

1) the orientation field information, 2) the class or type information, and 3) the friction ridge structure. The orientation estimation

algorithm determines the direction of local ridges using the evidence of minutiae triplets. The estimated orientation field, along with the

given minutiae distribution, is then used to predict the class of the fingerprint. Finally, the ridge structure of the parent fingerprint is

generated using streamlines that are based on the estimated orientation field. Line Integral Convolution is used to impart texture to the

ensuing ridges, resulting in a ridge map resembling the parent fingerprint. The salient feature of this noniterative method to generate

ridges is its ability to preserve the minutiae at specified locations in the reconstructed ridge map. Experiments using a commercial

fingerprint matcher suggest that the reconstructed ridge structure bears close resemblance to the parent fingerprint.

Index Terms—Fingerprints, minutiae, templates, security, fingerprint reconstruction, line integral convolution, streamlines.
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1 INTRODUCTION

Afingerprint is an oriented texture pattern consisting of

ridges and valleys present on the tip of an individual’s
finger. The ridges exhibit various types of imperfections,

calledminutiae (minor details in fingerprints). Among a total

of 150 different minutiae types [24], the ridge ending and

ridge bifurcation are the most stable points in a fingerprint.

The distribution of these points in a fingerprint has been

observed to be unique across individuals. In fact, this

distribution is claimed to be unique to each finger of an

individual. Thus, most automatic fingerprint authentication
systems do not store the raw fingerprint image of a user in its

entirety during enrollment. Rather, a template consisting of a

set of salient features (e.g., singular points, such as core and

delta, and ridge anomalies, such as minutiae) from the

fingerprint image is stored in the database. Since the

template, by definition, is a compact description of the

biometric sample, it is not expected to reveal significant

information about the original data. Therefore, template-
generation algorithms have been traditionally assumed to be

“one-way” algorithms. However, Hill [14] designed a

technique to determine the fingerprint structure from the

minutiae template alone. He assumed that a fingerprint

template stores the coordinates of the core anddelta points (if

present) along with the minutiae points. His technique

utilized the location of the singular points to derive the

orientation map of the fingerprint based on the method

proposed in [31]. This orientation map was then used by a

heuristic line drawing algorithm to generate a sequence of

splines passing through the minutiae points. Hill demon-
strated his reconstruction scheme on a small database of

25arch type fingerprints.His schemealsopredicted the shape

of the fingerprint (i.e., its class) using a neural network

classifier consisting of 23 input neurons, 13 hidden neurons,

and four output neurons (corresponding to the four major

fingerprint classes, viz., A, L, R, and W). However, the

classification performance was observed to be rather low (an

error rate of 28.9 percent on a small set of 242 fingerprints).
Similarly, in the face domain, Adler [2] demonstrated that a

face imagecouldbe reconstructed fromface templatesusinga

“hill climbing attack.”

The information elicited from a biometric template can be

categorized into three distinct levels based on the complexity

of the reconstructed information/image [12]: 1) feature

reconstruction: an image that is sufficient to fool a biometric

system but unrepresentative of the underlying physical char-

acteristics to the naked eye, 2) generic image recreation: an

image resembling the actual physical trait, and 3) total image

recreation: an image identical to the original physical trait.
In this paper, we concern ourselves with systematically

addressing the following question: How much information

does the minutiae template reveal about the original finger-

print image?1 The benefits of such a study are two fold: 1) It

helps in understanding the vulnerability of decrypted

fingerprint templates to a masquerade attack (generating a
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physical artifact from the stored template and using it for

spoofing fingerprint devices) and 2) it provides insight into

the individuality of fingerprints as assessed using the

minutiaedistribution. Specifically,weattempt toextract three

levels of information about the original fingerprint from its

minutiae template, viz., the ridge orientation, class, and ridge

structure of the original fingerprint. Our approach is sig-

nificantly different from the one proposed byHill [14] both in

its formulation as well as its scope. While Hill’s orientation

field estimationwas based on singular point information, our

methodreliesonminutiae informationalone.Thus, itobviates

the need for the presence of singular point information in the
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Fig. 1. Minutiae plots of four major fingerprint classes: (a) Arch ðAÞ. (b) Whorl ðWÞ. (c) Left Loop ðLÞ. (d) Right Loop ðRÞ. Lines associated with the

minutiae depict their orientation.

Fig. 2. Deducing the orientation field from minutiae distribution. (a) A single minutiae triplet. (b) Forming triplets across the minutiae distribution.

(c) Estimated orientation field using minutiae triplet information.

Fig. 3. Comparing the estimated orientation map �̂��� with the true map ���� for two different fingerprints. (a) Minutiae template. (b) True orientation map.

(c) Estimated orientation map. Due to the absence of valid triplets in certain regions, the estimated orientation map cannot characterize these

regions, e.g., the concentric pattern in whorls.



template. We assume the simplest characterization of a

minutiae template, i.e., the location, ðx; yÞ, and theorientation,
�, of component minutiae points.

The rest of the paper is organized as follows: The

algorithm for orientation estimation is described in Sec-

tion 2. The minutiae-based classification algorithm is

explained in Section 3. Section 4 presents the algorithm

for fingerprint reconstruction. Finally, Section 5 draws some

concluding remarks and discusses possible future work in

this area.

2 ESTIMATING RIDGE ORIENTATION

The orientation of aminutia is an indication of the local ridge

direction since the fingerprint is a smoothly changing

oriented texture pattern. Fig. 1 shows the minutiae plots of

four major classes of fingerprints viz., Arch ðAÞ, Whorl ðWÞ,
Left loop ðLÞ, and Right loop ðRÞ. These plots clearly suggest

the possibility of deducing the direction of local ridges by

examining the orientation of minutiae points in that local

region. Therefore, by observing the orientation of a group of

neighboring minutiae, one can “interpolate” the underlying

local ridge information. The proposed algorithmutilizes a set

of three minutiae points (minutiae triplet) to predict the

orientation of a triangular fingerprint region defined by the

triplet. In our formulation, as stated earlier, aminutia point is

represented as ðx; y; �Þ, with (x, y) being its spatial location

and � its orientation.2 The algorithm for generating the

orientation map has three main stages: 1) triplet generation,

2) orientation estimation, and 3) averaging orientation map.

1. Triplet generation. Consider aminutiae template,M,
of a fingerprint containingNminutiae points given by
M ¼ fm1;m2; � � � ;mNg, where mi ¼ ðxi; yi; �iÞ. A set
of three minutiae points, fmigi¼1;2;3, characterized by
a triangle with sides fLigi¼1;2;3 and interior angles

f�igi¼1;2;3, is said to constitute a “valid” triplet,T , if the
following conditions hold:

a. Lmin � Li � Lmax, 8 i ¼ 1; 2; 3. This ensures that
the perimeter of the triangle traverses a compact
region, thus avoiding the large global variability
observed in the fingerprints of most classes.

b. �dif � �tol, where �dif ¼ maxi¼1;2;3 ð�i � �medÞ and
�med is the median of f�igi¼1;2;3. This ensures that
the orientations of component minutiae points in
the triplet arewithin a small tolerance interval �tol.

c. �i > �min, 8 i ¼ 1; 2; 3. This ensures that “nar-
row” triangles subtending a very small area are
avoided.

In our experiments using the NIST-4 database, the

following parameter values were used: Lmin ¼ 20,

Lmax ¼ 300, �tol ¼ 30�, and �min ¼ 20�.
In a fingerprint image, minutiae tend to appear in

clusters [21]. For instance, the regions near the core

and delta have dense minutiae activity. In such cases,

a triplet may reside inside the triangular region of

another triplet or may overlap with it. Rather than

consolidating the orientation information estimated
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Fig. 4. Validating the estimated orientation map. (a) Correlation between �̂��� and ���� as observed on the NIST 4 database. (b) Correlation between �̂��� of

400 genuine fingerprint pairs from the L class in the NIST 4 database.

Fig. 5. Validating the estimated orientation map. MSE between �̂��� and ����

as observed on the NIST 4 database.

2. For orientation prediction, we do not make a distinction between
opposing angles, i.e., both 30� and 210� orientations are assumed to be the
same. The range of � is [90�, 270�].



by multiple triplets, we utilize the information

presented only by a good quality triplet. The quality,

Q, of each selected triplet is measured by examining

the average length of the sides of the triangle and the

orientations of component minutiae points and is

computed as

Q ¼ ðLmax � LavgÞw1 þ �tol � �diff
�diff

Lmax

� �
w2: ð1Þ

Here, Lavg is the average length of the sides of the

triplet, �diff is the maximum pairwise difference

between the three minutiae orientations, and w1 and

w2 are theweights associatedwith each term (w1 ¼ 0:4

and w2 ¼ 0:6, in our experiments). This ensures that a

triplet containingminutiae of similar orientations and

covering a relatively small area is assigned a higher

Q value. A good quality triplet is expected to result in

a better estimation of the orientation of the underlying

ridges. Here, the orientations are averaged over a

block (13� 13 in our experiments). Hence, for a 512�
512 image, a 39� 39 orientation map, �̂��� is generated.

Certain points in this grid may not contain any

orientation information due to the nonavailability of

“valid” triplets in those regions.
2. Orientation estimation. Consider a pixel P ðx; yÞ

located inside the triangular region defined by a
triplet. Let di ¼ distfmi; Pg, i ¼ 1; 2; 3 be the Eucli-
dean distances of this pixel from all the ith vertex. The
orientation of the pixel P , �̂���P , is then estimated as

�̂���P ¼ d3d2
ðd3d2 þ d1d3 þ d1d2Þ �1 þ

d1d3
ðd3d2 þ d1d3 þ d1d2Þ �2

þ d1d2
ðd3d2 þ d1d3 þ d1d2Þ �3:

The angle �1 ð�3Þ corresponds to the orientation of

the vertex that is nearest to (farthest from) the

pixel P ðx; yÞ. Thus, the orientation at P ðx; yÞ is

estimated as a weighted sum of all the three

orientations with a higher weight assigned to the

orientation of the closest vertex. The result of the

generated orientation map is shown in Fig. 2c.
3. Averaging orientation map. To obtain a smooth

transition in orientations, the estimated orientation
map is convolved with a 3� 3 local averaging filter.

2.1 Validating the Estimated Orientation Map �̂���

Visually, we observe that the estimated orientation map is

fairly consistent with the underlying ridge flow of the

original fingerprint. In order to verify the accuracy of the

algorithm, we compare the true orientation map with the

estimated one using a correlation measure. The true

orientation map, ����, can be computed using various

techniques as described in [23]. We use the least mean

square orientation approach [26] for estimating the true

orientation maps of fingerprint images from the NIST 4

database. The true and estimated orientation maps (���� and �̂���)

for two different fingerprints are shown in Fig. 3.
To determine the similarity between the true and

estimated orientation maps, we compute the Pearson’s
correlation coefficient, rð����; �̂���Þ. Fig. 5a shows the histogram
of correlation coefficients computed for the NIST 4 database
(2,000 fingerprint pairs), indicating that the estimated ridge
orientations are correlated with the underlying true ridge
flow. About 79 about of the orientation pairs have correlation
values greater than 0.75. In order to present a context to this
histogram, another histogram of correlation coefficients is
generated by comparing the estimated orientation maps of
400 genuine fingerprint pairs in the NIST 4 database (after
accounting for the translation and rotation parameters
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TABLE 1
A Summary of Different Fingerprint Classification Techniques

Fig. 6. Minutiae density associated with four different classes of fingerprints: (a) A, (b) W, (c) L, and (d) R. These plots were generated using

30 images per class. Blue indicates a low density region, while red indicates a high density region.



between image pairs). Fig. 4b clearly indicates that the

estimated orientations of the genuine fingerprint pairs are

correlated and, thus, confirms the efficacy of the orientation

estimation algorithm that is based on minutiae points alone.
To determine the accuracy of the orientation estimation

technique,wecompute theMeanSquareError (MSE)between

the estimated �̂��� and true orientation ����maps. Fig. 5 shows the

histogram of MSE computed for the NIST 4 database. It

suggests that the estimated ridge orientations are reasonably

consistent with the underlying true ridge flow. About

72 percent of the orientation pairs are observed to have MSE

values less than than 0.25. This further illustrates the ability of

the proposed algorithm to predict the underlying ridge flow.

3 PREDICTING FINGERPRINT CLASS FROM

MINUTIAE TEMPLATE

The ridge pattern in a fingerprint allows for its systematic
classification. According to the Galton-Henry classification
scheme [13], fingerprints can be classified into four main
classes, viz., Arch ðAÞ, Right loop ðRÞ, Left loop ðLÞ, and
Whorl ðWÞ. Tented Arch are included in the Arch ðAÞ class.
Loops (L and R) constitute about 65 percent of the total
fingerprint patterns; whorls make up about 30 percent and
arches and tented arches together account for the other
5 percent. A visual glance at the minutiae plots of the four
classes (Fig. 1) suggests the possibility of predicting the
fingerprint class from the minutiae points.

Fingerprint classification refers to theproblemofassigning

a fingerprint to a predefined class in a consistent and reliable
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Fig. 7. Estimating fingerprint class based on minutiae.

Fig. 8. Finding a region containing “salient” minutiae: (a) and (b) show
two fingerprints of class L and W, respectively, divided into several
regions. Note that the region in the vicinity of the core attains the most
discriminating information for type classification. (c) and (d) are the
original fingerprints corresponding to (a) and (b), respectively.

Fig. 9. Estimating the registration point ðR0Þ: (a) Circular plot of minutiae.
(b) Line L is perpendicular to the orientation of minutiae m. (c) Line L
made nearly perpendicular ð�30�Þ to the orientation �.

Fig. 10. Minutiae plot overlaid on original fingerprint belonging to

classes A, L, and W are shown in (a), (c), and (e), respectively. The

correspondingR0 pointsmarked in blue (“X”) detectedusing theestimated

orientation maps and minutiae points are shown in (b), (d), and (f).



way. Usually, fingerprint matching is performed using local

features such as local ridge and minutiae details, whereas

fingerprint classification is accomplished using global fea-

tures, such as global ridge structure and singularities. Most

fingerprint classification schemes in the literature use the

fingerprint image along with one or more features like ridge

line flow, singularities, orientation image, and Gabor filter

responses [23]. Table 1 summarizes the various features that

have been used in the literature for fingerprint classification.

We describe a novel algorithm for fingerprint classifica-

tion which uses only the minutiae information. Galton [11]

showed that there is a strong correlation between the class

of a fingerprint and the occurrence of a minutiae at a

specific location in the image. This is evident in Fig. 6. Here,

the fingerprint area has been divided into fixed blocks (for

each class) and the probability of minutiae occurring in each

block is estimated based on a sample of 30 fingerprints per

class. The minutiae density is observed to vary across the

fingerprint image for the four fingerprint classes. Similar

observations have been reported in the forensic literature

also (see [28], for example), further substantiating our

hypothesis that the seemingly random distribution of

minutiae in a fingerprint can reveal important information

about the class of the fingerprint.

We assume that only the position and orientation ðx; y; �Þ
of a minutia point is available in the template and that

information about the singularity points is not known.3

Fig. 7 summarizes the main steps in the proposed

classification algorithm.

3.1 Detecting Registration Point

A visual analysis of the fingerprint ridge patterns of various

classes reveals that they have almost the same ridge

structure in the base and marginal areas, as shown in

Fig. 8. However, it is the irregularities in the vicinity of the

core region that are significant for classification (such as the

circular ridge pattern in the case of whorls or the curving

back of ridges in loops). In order to select these “salient”

minutiae, we attempt to detect a registration point ðR0Þ
using the Hough transform [3].

The ridges around the core point have a high curvature

and form a nearly circular pattern. Accordingly, the

orientations of the minutiae in such regions define a nearly

circular pattern. Consider a circle ðx� x0Þ2 þ ðy� y0Þ2 ¼ r2

defined by a group of minutiae, as shown in Fig. 9a. Here,

x0 and y0 are the coordinates of the center of the circle and r

is its radius. Our goal here is to detect the center of the

circle. It can be observed that the minutiae depicted in

Fig. 9a have orientations almost tangential to the circum-

ference of the circle. Using this property, for each minutiae

m we traverse a line L that is perpendicular to its

orientation �. This line is viewed as a set of discrete points,

as shown in Fig. 9b. These points correspond to the

probable center points of the circle. The radius r of each

of these circles is the distance between the minutiae and the

corresponding center points since the minutia m lies on

their circumferences. An accumulator in 3D Hough space

corresponding to the center ðx; yÞ and radius r is used to

detect the center. For a circular minutiae pattern, there will

be a well-pronounced peak in the Hough parameter space

corresponding to the center ðx0; y0Þ (point marked with red

“x” in Fig. 9a). This is the registration point characterized by

significant minutiae activity around it. Since the ridge

structure in fingerprints is not exactly circular, we use lines

that are nearly perpendicular ð�30�Þ to the orientation �, as

shown in Fig. 9c. The results of the Hough transform using

the estimated orientation maps and the minutiae points are

shown in Fig. 10. The purpose of this exercise is not to detect

the core of the fingerprint; rather, it is to detect a

registration point that can be used to extract the “salient”

minutiae. Only the minutiae located in a 300� 300 pixels

region about R0 are used for classification (Fig. 11).

3.2 Generating Feature Vectors

A feature vector is next extracted from the set of salient

minutiae identified in the previous stage. The features in

this vector capture various properties of the minutiae such

as the relationship between minutiae location and orienta-

tion, the clustering property of minutiae, the relationship

between minutiae pairs, etc. The features we have designed

in this regard are invariant to the rotation and translation of

fingerprint images. The 11-dimensional feature vector F ¼
fF1; F2; � � � ; F11g is constructed as follows.

3.2.1 Features Based on Minutiae Orientations (F1, F2)

The orientations represented by the minutiae vary across

the four classes. For instance, a whorl fingerprint has at

least one ridge which traverses a 360� closed path in the

central region of the fingerprint. Thus, the orientations of

these minutiae range from 0-360 degrees. On the other

hand, the minutiae orientations of arches have only two

dominant directions. In order to understand the distribu-

tion of minutiae orientations for each class, we examine the
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Fig. 11. Extracting salient minutiae. (a) The orientation map and the

detected registration point. (b) Salient minutiae in a 300� 300 region

about R0.

3. Note that the basic shape of the fingerprint is decided by the location
and orientation of singularities. So, if the minutiae template were to store
the position and orientation of singularities, then determining the class of
the fingerprint is a rather simple task.



rose plots4 of minutiae orientations (Fig. 12). The range of

dominant minutiae orientations is captured by counting the

number of empty bins in the rose plot (feature F1). This

feature effectively discriminates between whorl and arch

types, though it may not discriminate between the other

classes. Feature F2 is used to denote the variance in

minutiae orientations present in the template.

3.2.2 Features Based on Minutiae Pairs (F3 to F6)

Minutiae pairs are fundamental units for representing

variations in fingerprints [32]. The properties of neighbor-

ing minutiae change across classes. For instance, the

neighboring minutiae in the central region of W have large

orientation differences, whereas minutiae neighbors in A

have similar orientations. The correlation between spatial

location and orientation of minutiae pairs can be examined

by estimating the joint distribution of R and �, where R is

the distance between two minutiae and � is the difference

in their orientation (as shown in (4) to (7)). Let P ðR;�Þ
denote the probability of observing a minutiae pair which

are separated by a distance R and with difference in

orientation �. Then, F3 is the number of minutiae pairs that

are spatially compact and have almost similar orientations;

F4 is the number of pairs that are spatially compact but

have a large orientation difference; F5 is the number of

minutiae pairs that are spatially separated and have similar

orientations; F6 is the number of minutiae pairs that are

spatially separated but have large differences in orientation.

Fig. 13 illustrates these four types of minutiae pairs.

F3 ¼
Z
0�R�R1

Z
0����1

P ðR;�Þ dR d�; ð2Þ

F4 ¼
Z
0�R�R1

Z
�1����2

P ðR;�Þ dR d�; ð3Þ

F5 ¼
Z
R�R2

Z
0����1

P ðR;�Þ dR d�; ð4Þ

F6 ¼
Z
R�R2

Z
�1����2

P ðR;�Þ dR d�: ð5Þ

In our experiments with the NIST-4 database, we have
set R1 ¼ 60 pixels, R2 ¼ 180 pixels, �1 ¼ 30�, and �2 ¼ 180�.
It is observed that these features are significantly different
for the four fingerprint classes. For arches, F3 takes
relatively larger values compared to the other three
features, whereas, for whorls, F4 is typically the largest.

3.2.3 Features Based on Minutiae Clusters (F7, F8)

Minutiae tend to cluster in certain regions of the fingerprint.

For example, minutiae activity increases in the core and

delta regions of a fingerprint [21], [32], [8]. Variations in

ridge flow seem to contribute to a high incidence of

minutiae points. In order to capture these variations across

fingerprint classes, we compute the minutiae density in

circular regions representing a radii of 50 pixels. Feature F7

is defined to be the maximumminutiae density correspond-

ing to a particular fingerprint template. The value of F7 is

relatively high for whorls and small for arches. Feature F8 is

the maximum variance in minutiae orientations observed

across all the circular regions considered.

3.2.4 Features Based on Global Ridge Information

(F9, F10, F11)

Visually (Fig. 1), it is apparent that features F1 to F8 can

possibly distinguish classes A and W, but are not sufficient

for reliably resolving ambiguity between classes (L, R),

(A, L, R), and (L, R, W). It is necessary to include

information about global ridge pattern in conjunction with

the local minutiae properties to address this issue. To

capture the global ridge structure of the fingerprint, we

define geometric kernels which model the shape of the

fingerprint around the core region for the W, L, and R

classes. In a left loop, the ridges in the core region form a
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Fig. 12. Rose plots of (a) A, (b) W, (c) L, and (d) R.

Fig. 13. A minutiae plot illustrating the four types of minutiae pairs.4. The rose plot is a a polar plot showing the histogram of angles.



loop by recurving to the left side of the fingerprint. This is

captured by a kernel constructed using two semi-ellipses

corresponding to the concave and convex portions of the

loop. The kernel for R is merely a mirror image of the L

kernel. The circular ridge structure ofW is captured using a

simple circular kernel. Since the marginal area of every

fingerprint has arch-like characteristics (Fig. 8), we do not

define a separate kernel for the A class as it would align

well with fingerprints of all the other classes. See Fig. 14.

In order to determine a goodness-of-fit for these kernels,

we use a model-based scheme by modifying the hierarchical

kernel fitting approach proposed by Jain and Minut [18]. In

this approach, fingerprint classification is achieved by

finding the kernel that best fits the flow field (i.e, orientation

field) of a given fingerprint template. Consider V to be a

smooth vector field defined over some region in the planeR2

and let� be its argument. Let� bea circular kernel curve inR2,

as shown in Fig. 15.

Let _� be the tangent to � and � be its argument. Consider

a point �t ¼ ðxðtÞ; yðtÞÞ present on the kernel �. An energy

functional capturing the difference between the direction of

_� and that of the vector field V at point � is defined by

Eð�Þ ¼
R
� sin

2ð�� �ð�ÞÞ d�R
� d�

: ð6Þ

To determine how well each kernel fits the estimated

orientation map of the fingerprint, energy values (6) for

various discrete points on the kernel are computed. The

average of these values is used to determine the goodness of

the fit. A lower energy average means a better fitting kernel.

For each estimated orientation map (from minutiae infor-

mation), we find three values for the energy functionals

corresponding to the L, R, and W kernels. These func-

tionals form features (F9, F10, F11), respectively. For an

orientation map corresponding to W, it is expected that the

minimum of the three features will be F11, whereas, for L

and R, the minimum will correspond to F9 and F10,

respectively. We observed that, due to the inherent

similarity in ridge structure of loops and arches, both the

L and R kernels fit well for fingerprints belonging to class

A. Thus, F9 and F10 are similar-valued for arches. This

property is useful for resolving the ambiguity between

loops and arches.

The class-specific kernels are defined with respect to the

registration point, R0, obtained using the Hough transform,

i.e., for the W kernel, R0 is the center of the circle, whereas,

for the L and R kernels, R0 is the focus of the elliptical

kernel. The rotation and translation of fingerprints are taken

into account by subjecting these kernels to certain pre-

defined transformations prior to applying them. For W, the

radius of the kernel is varied between 100 to 160 pixels. For

L and R, the semi-major axis is varied between 120 to 180,

while the semi-minor axis is varied between 60 to 100 pixels.

The angle that the ellipse subtends with the horizontal is

varied between �10 to 10 degrees. Further, the kernels are

moved in a 20� 20 window around R0. The features (F9,

F10, F11) correspond to the minimum of the energy

functional obtained across all transformations for each

kernel.

3.3 Classification of Fingerprints

A K-nearest neighbor classifier employing the Manhattan

distance was used to classify the minutiae sets in the NIST-4

fingerprint database based on the 11 features described

above.5 A good quality fingerprint typically consists of

between 40-100 minutiae [16], but this is not true for some

fingerprints in theNIST-4database. Since a sufficient number

of minutiae triplets is necessary to compute the orientation

map,werejected fingerprintswith less than25minutiae.Also,
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Fig. 14. Kernels for (a) W, (b) L, and (c) R.

Fig. 15. Fitting kernels to flow fields. Red vector: Unit tangent vector to

the kernel. Green vector: Direction of flow field at point �t [18].
5. Since K ¼ 5 resulted in the best performance, we report the

classification performance for the 5-NN classifier only.



inorder toensureanequaldistributionof templatesacross the

four classes, we considered only 2,800 minutiae templates

extracted from the NIST-4 database (i.e., 700 templates per

class).

From each of the four classes, we used 150 fingerprints

(randomly chosen) for training and 550 fingerprints for

testing the classification performance. We invoked an

exhaustive feature selection technique to select the optimal

features resulting in the best classification performance. We

observed that, by reducing the dimensionality of the feature

vector from 11 to 8, the classifier performance could be

improved. The 8 selected features were F1, F2, F3, F4, F7, F9,

F10, F11. A 4-class classification rate of 84 percent was

obtained; the resultant confusion matrix is shown in Table 2.

3.4 Analyzing Classifier Performance

Though our classification result is inferior to the state-of-

the-art classification techniques [23], it suggests an inherent

relationship between the class of the fingerprint and the

underlying minutiae distribution. Most of the misclassifica-

tions represent cases where ridges contributing to impor-

tant pattern characteristics (e.g., recurving ridges) do not

have minutiae. This can be seen in Fig. 16, where the

minutiae plot does not capture the recurving of ridges in the

core region of a right loop resulting in a classification error.

Furthermore, the definition of a fingerprint class can be

ambiguous in some instances. Even human fingerprint

experts cannot uniquely classify certain fingerprints. (About

17 percent of the 4,000 images in the NIST-4 database have

been assigned two different ground truths.) The NIST-4

data set also has quite a few low quality and partial

fingerprints that do not include the delta region. Fingerprint

images, in some cases, may have large intraclass variability

(i.e., prints of the same class may have very different

characteristics) and small intraclass variability (i.e., prints of

different classes look similar), as shown in Fig. 17.

4 FINGERPRINT RECONSTRUCTION

By the term “reconstruction” of fingerprints, we refer to the

regeneration of fingerprints from the stored minutiae

points. While various approaches have been proposed for

generating synthetic fingerprints [7], [1], to the best of our

knowledge, no technique for reconstructing fingerprints

with minutiae points at desired locations has been proposed

in the literature.

Given the estimated orientation field, we generate the

ridge structure associated with it. In our earlier work [27],

we attempted to use a Gabor filter-based technique to

generate fingerprints from the estimated orientation field.

However, such a scheme does not permit control over the

location, number, and type of minutiae in the generated

image. Here, we propose a novel algorithm for recovering

the ridge structure from the minutiae template, which

enables us to place minutiae at desired locations.

Streamlines and Line Integral Convolution (LIC) have

been widely used for imaging arbitrary two and three-

dimensional vector fields [4], [22]. Given a vector field,

streamlines are the curves that are tangential to the vector

field at every point. These are also called integral curves as

they are generated by integrating the vector field. LIC is

basically a texture synthesis technique that is used to
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TABLE 2
Confusion Matrix Indicating Classification

Performance Using Minutiae Information Alone

Fig. 16. The minutiae plot of a fingerprint belonging to the R class. This

was misclassified as A in our experiments. The minutiae plot does not

appear to capture the shape of the recurving ridge (marked in (a)).

Fig. 17. Small interclass variability between classes (a) L andA. (b)R and W. (c) and (d) Large intraclass variability between two prints of classW.



visualize 2D data. Cabral and Leedom [4] proposed LIC for

imaging vector fields and to produce novel special effects

such as motion blurring in images. Fig. 18 shows the key

steps for visualizing vector fields using streamlines and

LIC. For a given vector field, the streamlines are first

generated. Next, by using streamlines in conjunction with a

spatially uncorrelated white noise image, LIC computes the

intensity values for the coordinates of each streamline. It

applies a one-dimensional filter to blur the noise image

along the streamlines, resulting in a texture image which

aids in the clear visualization the vector field. A fingerprint

is an oriented texture pattern and, therefore, the use of

streamlines and LIC for generating the ridge structure is

quite appropriate; streamlines are used to generate the

thinned ridges, whereas LIC is used to impart texture-like

appearance to the ensuing ridges. The main stages in

regenerating fingerprints are shown in Fig. 19.

1. Estimating orientation map �̂���. Given a minutiae

template, we first obtain the estimated orientation

map �̂��� using minutiae triplets described in Section 2.
2. Constructing streamlines using �̂���. A streamline is a

path in the orientation map �̂��� whose tangent vectors

coincide with �̂��� (Fig. 20a).
Let P be a point in the orientationmap �̂��� and S be a

streamline passing through P . Let the curvature at
point P be due to a circle of radius rðtÞ. Then, the
tangent dr at point P is given by,

dr

dt
¼ �̂���½rðtÞ	; ð7Þ

where dt represents the next position. A numerical
integration technique or an interpolation technique
can be used to solve this ordinary differential
equation (ODE). Integrating (7) yields,

rðtÞ ¼ rð0Þ þ
Z t

0

�̂���ðrðtÞÞdt: ð8Þ

With the help of (8), a streamline can be initiated

froma seed point andevolved in small steps of size dt. If

we solve the above ordinary differential equation for

�̂���ðx; yÞwith the seedpoint as ðx; yÞ,weget a streamline

as shown in Fig. 20b. In order to generate streamlines

for constructing ridge lines, the following issues have

to be addressed: 1) selection of seed points, 2) criteria

for streamline termination, 3) distance between

adjacent streamlines, and 4) generation of minutiae

in predetermined positions.

a. Seed point selection. The seed points are the

prespecified points in an orientation map �̂��� from

which the streamlines originate. Here, the seed
point can be considered to be a minutia (ridge

ending). Thus, in order to generate minutiae at

desired locations, we use the minutiae locations

as seed points. However, using only minutiae as

seed points results in the sparse distribution of

streamlines over the image plane (Fig. 21b). Thus,

we also use the boundary points of �̂��� as seed

points. This enables us to capture the global shape
of the parent fingerprint as shown in Fig. 21c.

In high minutiae-density areas, the seed

points will occur in close proximity, resulting

in a clutter of streamlines in local regions. To

solve this problem, we place all the seed points,

Si, i ¼ 1 � � � kþ n (where k and n are the number

of border points and minutiae, respectively), on

a lattice with cell size Ds �Ds such that two

seed points are at leastDs ¼ 10 pixels apart from

each other, as shown in Fig. 22a. Due to this

mapping, a single grid point may correspond to

multiple minutiae points. This prevents the

excessive proliferation of streamlines in a local

region.
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Fig. 18. Visualizing vector field using LIC.

Fig. 19. Proposed fingerprint reconstruction algorithm.

Fig. 20. Constructing streamlines. (a) A streamline S tangent to the

orientation field �̂���. (b) Streamline originating from a seed point (x, y) in

the orientation field �̂���.



b. Streamline construction. While most particle

tracking algorithms (e.g., [29]) use various nu-

merical integration techniques to solve (8),weuse

a linear interpolation scheme for constructing

streamlines.6 Once a streamline is initiated froma

seed point, the orientations of its four immediate

neighbors are used to linearly interpolate the next

location of the streamline. The streamline is

terminated if

i. it encounters a boundary point in the grid,

ii. it arrives in the vicinity of a minutia point
(when a streamline is within a predeter-
mined distance from a minutia point, i.e.,
five pixels, as shown in Fig. 22c), and

iii. if the number of coordinates computed is
greater than 10,000.

A minutia (ridge ending) is generated if either a

streamline initiates from that point or another

streamline appears in its proximity. In the

current implementation, we generate only ridge

endings at the desired minutiae locations since it

is assumed that the “type” of the minutia is not

stored in the template.

It has been observed in the literature that a

constant density of seed points does not

necessarily ensure an even distribution of the

streamlines [4]. The generated streamlines may

not be evenly distributed, resulting in a frenzy

of streamline activity in certain local regions.

While several elegant techniques exist for

creating evenly spaced streamlines (see [19],

for example), we employ a simple technique to

control interridge distances ðDrÞ: Ridges are

generated with uniform interridge distances

over the entire fingerprint image since we

assume that the minutiae template does not
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Fig. 21. Streamline generation. (a) Estimated orientation map �̂��� with border points marked in red. (b) Streamlines generated using minutiae points as
seed points. (c) Streamlines generated using border points as seed points. (d) Original fingerprint from A and R classes.

Fig. 22. Streamline construction: (a) Lattice of seed points (Dseed ¼ 10). (b) Seed points “S” overlaid on the orientation field, �̂���, of an arch.
(c) Streamline terminated near a minutia “m.”

6. The “stream3c” function in Matlab (version 7.0) was used for this
purpose.



store any information about the interridge

distance of the parent fingerprint. During

streamline construction, if a streamline is in

the proximity of another streamline ðDr ¼ 5Þ,
then it is discarded. This avoids the cluttering

of streamlines in local regions (Fig. 23).

Fig. 24 shows the results of streamline

generation for different fingerprint classes.
3. Generating ridge structure using LIC. The applica-

tion of streamlines results in the generation of

binarized thin ridge lines for the estimated orientation

map �̂���. In order to impart texture-like appearance to

the ridges, we use Linear Integral Convolution (LIC).

Given a streamline S, the LIC technique involves

calculating the intensity of all pixels constituting the

streamline. It locally blurs an uncorrelated input

texture image, such as white noise, along the path of

the streamlines to impart a dense visualization of the

flow field. Consider a pixel at location x0 ¼ Sðp0Þ on
the streamline. Its intensity is computed using one-

dimensional filtering as

Iðx0Þ ¼
Z p0þL

p0�L

kðp� p0ÞT ðSðpÞÞdp; ð9Þ

where T is the texture (white noise) image. The

kernel, k, is a one-dimensional low-pass filter with

L ¼ 25 pixels. The convolution results in the

generation of ridge-like patterns whose orientations

correspond to the estimated vector/orientation field

(Fig. 25). The filter lengthL determines howmuch the

texture is smeared in the direction of the vector field.

Due to the application of LIC, the binary image

generated using streamlines is converted to a gray

scale image (Fig. 26b).
4. Enhancing the ridge map. Although LIC imparts

texture-like appearance to the thin ridges (stream-

lines), the ridges are still one-pixel thick. In order to

increase the ridge width, we first use a lowpass filter

to smooth the texture image generated using LIC and

then perform histogram equalization of the ridge

structure for contrast enhancement, as shown in

Fig. 26c. The reconstructed fingerprints using minu-

tiae alone are actually partial fingerprints. This is

because a minutiae template does not capture all the

global properties of the parent fingerprint. We

demonstrate that it is indeed possible to reconstruct

at least those parts of the fingerprint which are useful

for authentication.

Some of the fingerprints in the NIST 4 database are

noisy, as shown in Fig. 27a. The minutiae extracted

from a poor quality fingerprint image might be

erroneous (in terms of their location and orientation).

This will affect the orientation estimation procedure

and, consequently, the streamlineswill not conform to

the original fingerprint (Figs. 27b and 27c).
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Fig. 23. Streamline generation. (a) Estimated orientation map �̂���. (b) Streamlines generated without controlling Dr. (c) Streamlines generated by
setting Dr ¼ 5.



4.1 Validation of Reconstructed Fingerprints

Fig. 28 shows an overlay of the original and reconstructed

fingerprints for two classes of fingerprints: A and L.

Visually, it is evident that the reconstructed fingerprints

are consistent with the underlying ridge structures. We

conducted experiments to quantitatively determine the

similarity between the reconstructed ridge structure and

the parent fingerprint.

To test our reconstruction algorithm, we used the NIST-

4f database. NIST-4f contains 2,000 fingerprints (500 finger-

prints per class) of size (512� 512) and one fingerprint per

individual. Using the VeriFinger 4.1 SDK developed by

Neurotechnologija,7 we computed the similarity scores

generated when matching the reconstructed fingerprint

against the respective parent fingerprint. The VeriFinger

application first enhances the input fingerprint before

matching it against other fingerprints as, shown in Fig. 29.

We considered two matching scenarios. In the first

scenario, each reconstructed fingerprint was matched

against every parent fingerprint in the database. In the
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Fig. 24. Streamline generation for three fingerprint classes (A, L, and W): (a) Minutiae plot. (b) Estimated orientation map �̂���. (c) Streamlines.

Fig. 25. Texture rendering using LIC. (a) White noise image, T .
(b) Convolving T with a streamline. (c) Output of the convolution
process.7. http://www.neurotechnologija.com.



second scenario, it is assumed that the class of the parent

fingerprint is known, so the reconstructed fingerprint is

matched with only parent fingerprints corresponding to

this class. For each reconstructed fingerprint, the top

matches are recorded and the CMC (Cumulative Match

Characteristics) curve is generated to summarize the

identification performance. The CMC graph plots the

identification rate as a function of the number of top

matches (ranks) [25].

Fig. 30 shows the CMC curves corresponding to these

experiments. About 23 percent of the regenerated finger-

prints are observed to match successfully (at the rank one

level) with the parent fingerprint. When the class informa-

tion is used to narrow the search, then 
 30 percent of type

L fingerprints and 
 35 percent of type A fingerprints

correctly match with their respective parent fingerprints. It

is observed that fingerprints of type W result in the lowest

identification rate. A fingerprint of class W is characterized

by high ridge activity near the core and delta region. The

orientation estimation algorithm cannot accurately capture

the ridge orientations near the core or delta region from the

minutiae information alone. This results in the incorrect

generation of streamlines in such regions. Hence, the

associated minutiae points may not match well with those

of the original fingerprint, resulting in a lower identification

rate. Also, during streamline construction, we do not

permit a streamline to be generated too close to an existing

streamline. As the interridge distance information is not

available in the minutiae template, we use a constant inter-

ridge distance over the entire image plane. Thus, very few

streamlines are generated in regions with high minutiae

density resulting in missing minutiae in the reconstructed

fingerprint.
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Fig. 26. (a) Estimated orientation map �̂���. (b) Result of applying LIC. (c) Enhanced fingerprint using a 5� 5 lowpass filter.

Fig. 27. Reconstruction of a poor quality fingerprint. (a) Original left loop and its minutiae plot. (b) Estimated orientation map �̂���. (c) Reconstructed

fingerprint.

Fig. 28. Overlay of original (magenta) and reconstructed (blue)

fingerprints for two minutiae templates.



5 SUMMARY AND FUTURE WORK

It has been traditionally assumed that a minutiae template

does not reveal substantial information about the parent

fingerprint. In this paper, it was demonstrated that three

levels of information about the parent fingerprint can be

elicited from a given minutiae template: the orientation

field, the fingerprint class, and the friction ridge structure.

The orientation field is estimated using minutia triplet

information. The class of the parent fingerprint is inferred

from specific attributes of the minutiae distribution in

conjunction with the estimated orientation field. The ridge

structure of the parent fingerprint is generated by applying

streamlines and LIC on the estimated orientation field. The

ridge generation technique controls the location and the

number of minutiae in the generated ridge map and, hence,

may be used as an alternative scheme for generating

synthetic fingerprints with minutiae placed at predeter-

mined locations. The reconstructed ridge structure is

observed to be visually similar to that of the parent

fingerprint. Furthermore, the reconstructed image may be
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Fig. 29. Reconstructing the ridge structure. (a) Original fingerprint and its minutiae plot. (b) Estimated orientation map �̂���. (c) Enhanced ridge structure

after application of the Verifinger software.



used to generate synthetic prints that can be used to

compromise the security of a biometric system. If other

information, such as the location of singular points, the class

of the fingerprint, the type of minutiae, and interridge

attributes, are available in the template, then, perhaps, the

original fingerprint can be reconstructed in its entirety.

The inferred fingerprint class could be used during the

streamline construction process to control the density and

occurrence of minutiae across the fingerprint. For example,

each fingerprint class could have a different seeding

strategy. Verma et al. [33] discuss a seed placement strategy

based on flow features in the data set. In their technique, the

seeds are placed in the vicinity of critical points in the flow

field to capture important flow patterns. Such an approach

may be used here to enhance the accuracy of the generated

friction ridge structure. Also, more sophisticated numerical

integration methods, like the fifth order Runge-Kutta

technique, may be used to improve the quality of the

streamlines.

The fingerprint reconstruction process can be moderated

by employing an iterative hill climbing approach (see

Fig. 31). In such a scheme, the reconstructed artifact can

be matched against the minutiae template stored in the

database via the matching system. Based on the match score

released by the system, the fingerprint reconstruction

process can be modified so as to improve the match score.

We are also currently investigating ways to enhance the

visual appearance of the reconstructed fingerprints.
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